3.1502 \(\int \frac{x^4}{1+x^8} \, dx\)

Optimal. Leaf size=347 \[ -\frac{\log \left (x^2-\sqrt{2-\sqrt{2}} x+1\right )}{8 \sqrt{2 \left (2-\sqrt{2}\right )}}+\frac{\log \left (x^2+\sqrt{2-\sqrt{2}} x+1\right )}{8 \sqrt{2 \left (2-\sqrt{2}\right )}}+\frac{\log \left (x^2-\sqrt{2+\sqrt{2}} x+1\right )}{8 \sqrt{2 \left (2+\sqrt{2}\right )}}-\frac{\log \left (x^2+\sqrt{2+\sqrt{2}} x+1\right )}{8 \sqrt{2 \left (2+\sqrt{2}\right )}}+\frac{\tan ^{-1}\left (\frac{\sqrt{2-\sqrt{2}}-2 x}{\sqrt{2+\sqrt{2}}}\right )}{4 \sqrt{2 \left (2+\sqrt{2}\right )}}-\frac{\tan ^{-1}\left (\frac{\sqrt{2+\sqrt{2}}-2 x}{\sqrt{2-\sqrt{2}}}\right )}{4 \sqrt{2 \left (2-\sqrt{2}\right )}}-\frac{\tan ^{-1}\left (\frac{2 x+\sqrt{2-\sqrt{2}}}{\sqrt{2+\sqrt{2}}}\right )}{4 \sqrt{2 \left (2+\sqrt{2}\right )}}+\frac{\tan ^{-1}\left (\frac{2 x+\sqrt{2+\sqrt{2}}}{\sqrt{2-\sqrt{2}}}\right )}{4 \sqrt{2 \left (2-\sqrt{2}\right )}} \]

[Out]

ArcTan[(Sqrt[2 - Sqrt[2]] - 2*x)/Sqrt[2 + Sqrt[2]]]/(4*Sqrt[2*(2 + Sqrt[2])]) - ArcTan[(Sqrt[2 + Sqrt[2]] - 2*
x)/Sqrt[2 - Sqrt[2]]]/(4*Sqrt[2*(2 - Sqrt[2])]) - ArcTan[(Sqrt[2 - Sqrt[2]] + 2*x)/Sqrt[2 + Sqrt[2]]]/(4*Sqrt[
2*(2 + Sqrt[2])]) + ArcTan[(Sqrt[2 + Sqrt[2]] + 2*x)/Sqrt[2 - Sqrt[2]]]/(4*Sqrt[2*(2 - Sqrt[2])]) - Log[1 - Sq
rt[2 - Sqrt[2]]*x + x^2]/(8*Sqrt[2*(2 - Sqrt[2])]) + Log[1 + Sqrt[2 - Sqrt[2]]*x + x^2]/(8*Sqrt[2*(2 - Sqrt[2]
)]) + Log[1 - Sqrt[2 + Sqrt[2]]*x + x^2]/(8*Sqrt[2*(2 + Sqrt[2])]) - Log[1 + Sqrt[2 + Sqrt[2]]*x + x^2]/(8*Sqr
t[2*(2 + Sqrt[2])])

________________________________________________________________________________________

Rubi [A]  time = 0.186792, antiderivative size = 347, normalized size of antiderivative = 1., number of steps used = 19, number of rules used = 7, integrand size = 11, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.636, Rules used = {299, 1127, 1161, 618, 204, 1164, 628} \[ -\frac{\log \left (x^2-\sqrt{2-\sqrt{2}} x+1\right )}{8 \sqrt{2 \left (2-\sqrt{2}\right )}}+\frac{\log \left (x^2+\sqrt{2-\sqrt{2}} x+1\right )}{8 \sqrt{2 \left (2-\sqrt{2}\right )}}+\frac{\log \left (x^2-\sqrt{2+\sqrt{2}} x+1\right )}{8 \sqrt{2 \left (2+\sqrt{2}\right )}}-\frac{\log \left (x^2+\sqrt{2+\sqrt{2}} x+1\right )}{8 \sqrt{2 \left (2+\sqrt{2}\right )}}+\frac{\tan ^{-1}\left (\frac{\sqrt{2-\sqrt{2}}-2 x}{\sqrt{2+\sqrt{2}}}\right )}{4 \sqrt{2 \left (2+\sqrt{2}\right )}}-\frac{\tan ^{-1}\left (\frac{\sqrt{2+\sqrt{2}}-2 x}{\sqrt{2-\sqrt{2}}}\right )}{4 \sqrt{2 \left (2-\sqrt{2}\right )}}-\frac{\tan ^{-1}\left (\frac{2 x+\sqrt{2-\sqrt{2}}}{\sqrt{2+\sqrt{2}}}\right )}{4 \sqrt{2 \left (2+\sqrt{2}\right )}}+\frac{\tan ^{-1}\left (\frac{2 x+\sqrt{2+\sqrt{2}}}{\sqrt{2-\sqrt{2}}}\right )}{4 \sqrt{2 \left (2-\sqrt{2}\right )}} \]

Antiderivative was successfully verified.

[In]

Int[x^4/(1 + x^8),x]

[Out]

ArcTan[(Sqrt[2 - Sqrt[2]] - 2*x)/Sqrt[2 + Sqrt[2]]]/(4*Sqrt[2*(2 + Sqrt[2])]) - ArcTan[(Sqrt[2 + Sqrt[2]] - 2*
x)/Sqrt[2 - Sqrt[2]]]/(4*Sqrt[2*(2 - Sqrt[2])]) - ArcTan[(Sqrt[2 - Sqrt[2]] + 2*x)/Sqrt[2 + Sqrt[2]]]/(4*Sqrt[
2*(2 + Sqrt[2])]) + ArcTan[(Sqrt[2 + Sqrt[2]] + 2*x)/Sqrt[2 - Sqrt[2]]]/(4*Sqrt[2*(2 - Sqrt[2])]) - Log[1 - Sq
rt[2 - Sqrt[2]]*x + x^2]/(8*Sqrt[2*(2 - Sqrt[2])]) + Log[1 + Sqrt[2 - Sqrt[2]]*x + x^2]/(8*Sqrt[2*(2 - Sqrt[2]
)]) + Log[1 - Sqrt[2 + Sqrt[2]]*x + x^2]/(8*Sqrt[2*(2 + Sqrt[2])]) - Log[1 + Sqrt[2 + Sqrt[2]]*x + x^2]/(8*Sqr
t[2*(2 + Sqrt[2])])

Rule 299

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{r = Numerator[Rt[a/b, 4]], s = Denominator[Rt[a/b,
 4]]}, Dist[s^3/(2*Sqrt[2]*b*r), Int[x^(m - n/4)/(r^2 - Sqrt[2]*r*s*x^(n/4) + s^2*x^(n/2)), x], x] - Dist[s^3/
(2*Sqrt[2]*b*r), Int[x^(m - n/4)/(r^2 + Sqrt[2]*r*s*x^(n/4) + s^2*x^(n/2)), x], x]] /; FreeQ[{a, b}, x] && IGt
Q[n/4, 0] && IGtQ[m, 0] && LtQ[m, n - 1] && GtQ[a/b, 0]

Rule 1127

Int[(x_)^2/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a/c, 2]}, Dist[1/2, Int[(q + x^2)/(
a + b*x^2 + c*x^4), x], x] - Dist[1/2, Int[(q - x^2)/(a + b*x^2 + c*x^4), x], x]] /; FreeQ[{a, b, c}, x] && Lt
Q[b^2 - 4*a*c, 0] && PosQ[a*c]

Rule 1161

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e - b/c, 2]},
Dist[e/(2*c), Int[1/Simp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /
; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] && (GtQ[(2*d)/e - b/c, 0] || ( !Lt
Q[(2*d)/e - b/c, 0] && EqQ[d - e*Rt[a/c, 2], 0]))

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1164

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e - b/c, 2]},
 Dist[e/(2*c*q), Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x
 - x^2, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] &&  !GtQ[b^2
- 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{x^4}{1+x^8} \, dx &=\frac{\int \frac{x^2}{1-\sqrt{2} x^2+x^4} \, dx}{2 \sqrt{2}}-\frac{\int \frac{x^2}{1+\sqrt{2} x^2+x^4} \, dx}{2 \sqrt{2}}\\ &=-\frac{\int \frac{1-x^2}{1-\sqrt{2} x^2+x^4} \, dx}{4 \sqrt{2}}+\frac{\int \frac{1+x^2}{1-\sqrt{2} x^2+x^4} \, dx}{4 \sqrt{2}}+\frac{\int \frac{1-x^2}{1+\sqrt{2} x^2+x^4} \, dx}{4 \sqrt{2}}-\frac{\int \frac{1+x^2}{1+\sqrt{2} x^2+x^4} \, dx}{4 \sqrt{2}}\\ &=-\frac{\int \frac{1}{1-\sqrt{2-\sqrt{2}} x+x^2} \, dx}{8 \sqrt{2}}-\frac{\int \frac{1}{1+\sqrt{2-\sqrt{2}} x+x^2} \, dx}{8 \sqrt{2}}+\frac{\int \frac{1}{1-\sqrt{2+\sqrt{2}} x+x^2} \, dx}{8 \sqrt{2}}+\frac{\int \frac{1}{1+\sqrt{2+\sqrt{2}} x+x^2} \, dx}{8 \sqrt{2}}-\frac{\int \frac{\sqrt{2-\sqrt{2}}+2 x}{-1-\sqrt{2-\sqrt{2}} x-x^2} \, dx}{8 \sqrt{2 \left (2-\sqrt{2}\right )}}-\frac{\int \frac{\sqrt{2-\sqrt{2}}-2 x}{-1+\sqrt{2-\sqrt{2}} x-x^2} \, dx}{8 \sqrt{2 \left (2-\sqrt{2}\right )}}+\frac{\int \frac{\sqrt{2+\sqrt{2}}+2 x}{-1-\sqrt{2+\sqrt{2}} x-x^2} \, dx}{8 \sqrt{2 \left (2+\sqrt{2}\right )}}+\frac{\int \frac{\sqrt{2+\sqrt{2}}-2 x}{-1+\sqrt{2+\sqrt{2}} x-x^2} \, dx}{8 \sqrt{2 \left (2+\sqrt{2}\right )}}\\ &=-\frac{\log \left (1-\sqrt{2-\sqrt{2}} x+x^2\right )}{8 \sqrt{2 \left (2-\sqrt{2}\right )}}+\frac{\log \left (1+\sqrt{2-\sqrt{2}} x+x^2\right )}{8 \sqrt{2 \left (2-\sqrt{2}\right )}}+\frac{\log \left (1-\sqrt{2+\sqrt{2}} x+x^2\right )}{8 \sqrt{2 \left (2+\sqrt{2}\right )}}-\frac{\log \left (1+\sqrt{2+\sqrt{2}} x+x^2\right )}{8 \sqrt{2 \left (2+\sqrt{2}\right )}}+\frac{\operatorname{Subst}\left (\int \frac{1}{-2-\sqrt{2}-x^2} \, dx,x,-\sqrt{2-\sqrt{2}}+2 x\right )}{4 \sqrt{2}}+\frac{\operatorname{Subst}\left (\int \frac{1}{-2-\sqrt{2}-x^2} \, dx,x,\sqrt{2-\sqrt{2}}+2 x\right )}{4 \sqrt{2}}-\frac{\operatorname{Subst}\left (\int \frac{1}{-2+\sqrt{2}-x^2} \, dx,x,-\sqrt{2+\sqrt{2}}+2 x\right )}{4 \sqrt{2}}-\frac{\operatorname{Subst}\left (\int \frac{1}{-2+\sqrt{2}-x^2} \, dx,x,\sqrt{2+\sqrt{2}}+2 x\right )}{4 \sqrt{2}}\\ &=\frac{\tan ^{-1}\left (\frac{\sqrt{2-\sqrt{2}}-2 x}{\sqrt{2+\sqrt{2}}}\right )}{4 \sqrt{2 \left (2+\sqrt{2}\right )}}-\frac{\tan ^{-1}\left (\frac{\sqrt{2+\sqrt{2}}-2 x}{\sqrt{2-\sqrt{2}}}\right )}{4 \sqrt{2 \left (2-\sqrt{2}\right )}}-\frac{\tan ^{-1}\left (\frac{\sqrt{2-\sqrt{2}}+2 x}{\sqrt{2+\sqrt{2}}}\right )}{4 \sqrt{2 \left (2+\sqrt{2}\right )}}+\frac{\tan ^{-1}\left (\frac{\sqrt{2+\sqrt{2}}+2 x}{\sqrt{2-\sqrt{2}}}\right )}{4 \sqrt{2 \left (2-\sqrt{2}\right )}}-\frac{\log \left (1-\sqrt{2-\sqrt{2}} x+x^2\right )}{8 \sqrt{2 \left (2-\sqrt{2}\right )}}+\frac{\log \left (1+\sqrt{2-\sqrt{2}} x+x^2\right )}{8 \sqrt{2 \left (2-\sqrt{2}\right )}}+\frac{\log \left (1-\sqrt{2+\sqrt{2}} x+x^2\right )}{8 \sqrt{2 \left (2+\sqrt{2}\right )}}-\frac{\log \left (1+\sqrt{2+\sqrt{2}} x+x^2\right )}{8 \sqrt{2 \left (2+\sqrt{2}\right )}}\\ \end{align*}

Mathematica [A]  time = 0.0057111, size = 209, normalized size = 0.6 \[ -\frac{1}{8} \cos \left (\frac{\pi }{8}\right ) \log \left (x^2-2 x \sin \left (\frac{\pi }{8}\right )+1\right )+\frac{1}{8} \cos \left (\frac{\pi }{8}\right ) \log \left (x^2+2 x \sin \left (\frac{\pi }{8}\right )+1\right )+\frac{1}{8} \sin \left (\frac{\pi }{8}\right ) \log \left (x^2-2 x \cos \left (\frac{\pi }{8}\right )+1\right )-\frac{1}{8} \sin \left (\frac{\pi }{8}\right ) \log \left (x^2+2 x \cos \left (\frac{\pi }{8}\right )+1\right )+\frac{1}{4} \cos \left (\frac{\pi }{8}\right ) \tan ^{-1}\left (\csc \left (\frac{\pi }{8}\right ) \left (x-\cos \left (\frac{\pi }{8}\right )\right )\right )+\frac{1}{4} \cos \left (\frac{\pi }{8}\right ) \tan ^{-1}\left (\csc \left (\frac{\pi }{8}\right ) \left (x+\cos \left (\frac{\pi }{8}\right )\right )\right )-\frac{1}{4} \sin \left (\frac{\pi }{8}\right ) \tan ^{-1}\left (\sec \left (\frac{\pi }{8}\right ) \left (x-\sin \left (\frac{\pi }{8}\right )\right )\right )-\frac{1}{4} \sin \left (\frac{\pi }{8}\right ) \tan ^{-1}\left (\sec \left (\frac{\pi }{8}\right ) \left (x+\sin \left (\frac{\pi }{8}\right )\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x^4/(1 + x^8),x]

[Out]

(ArcTan[(x - Cos[Pi/8])*Csc[Pi/8]]*Cos[Pi/8])/4 + (ArcTan[(x + Cos[Pi/8])*Csc[Pi/8]]*Cos[Pi/8])/4 - (Cos[Pi/8]
*Log[1 + x^2 - 2*x*Sin[Pi/8]])/8 + (Cos[Pi/8]*Log[1 + x^2 + 2*x*Sin[Pi/8]])/8 - (ArcTan[Sec[Pi/8]*(x - Sin[Pi/
8])]*Sin[Pi/8])/4 - (ArcTan[Sec[Pi/8]*(x + Sin[Pi/8])]*Sin[Pi/8])/4 + (Log[1 + x^2 - 2*x*Cos[Pi/8]]*Sin[Pi/8])
/8 - (Log[1 + x^2 + 2*x*Cos[Pi/8]]*Sin[Pi/8])/8

________________________________________________________________________________________

Maple [C]  time = 0.004, size = 22, normalized size = 0.1 \begin{align*}{\frac{1}{8}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{8}+1 \right ) }{\frac{\ln \left ( x-{\it \_R} \right ) }{{{\it \_R}}^{3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/(x^8+1),x)

[Out]

1/8*sum(1/_R^3*ln(x-_R),_R=RootOf(_Z^8+1))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4}}{x^{8} + 1}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(x^8+1),x, algorithm="maxima")

[Out]

integrate(x^4/(x^8 + 1), x)

________________________________________________________________________________________

Fricas [B]  time = 1.42206, size = 3182, normalized size = 9.17 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(x^8+1),x, algorithm="fricas")

[Out]

1/16*(sqrt(2)*sqrt(sqrt(2) + 2) - sqrt(2)*sqrt(-sqrt(2) + 2))*arctan(-(2*sqrt(2)*x - 2*sqrt(2)*sqrt(x^2 + 1/2*
sqrt(2)*x*sqrt(sqrt(2) + 2) - 1/2*sqrt(2)*x*sqrt(-sqrt(2) + 2) + 1) + sqrt(sqrt(2) + 2) - sqrt(-sqrt(2) + 2))/
(sqrt(sqrt(2) + 2) + sqrt(-sqrt(2) + 2))) + 1/16*(sqrt(2)*sqrt(sqrt(2) + 2) - sqrt(2)*sqrt(-sqrt(2) + 2))*arct
an(-(2*sqrt(2)*x - 2*sqrt(2)*sqrt(x^2 - 1/2*sqrt(2)*x*sqrt(sqrt(2) + 2) + 1/2*sqrt(2)*x*sqrt(-sqrt(2) + 2) + 1
) - sqrt(sqrt(2) + 2) + sqrt(-sqrt(2) + 2))/(sqrt(sqrt(2) + 2) + sqrt(-sqrt(2) + 2))) + 1/16*(sqrt(2)*sqrt(sqr
t(2) + 2) + sqrt(2)*sqrt(-sqrt(2) + 2))*arctan((2*sqrt(2)*x - 2*sqrt(2)*sqrt(x^2 + 1/2*sqrt(2)*x*sqrt(sqrt(2)
+ 2) + 1/2*sqrt(2)*x*sqrt(-sqrt(2) + 2) + 1) + sqrt(sqrt(2) + 2) + sqrt(-sqrt(2) + 2))/(sqrt(sqrt(2) + 2) - sq
rt(-sqrt(2) + 2))) + 1/16*(sqrt(2)*sqrt(sqrt(2) + 2) + sqrt(2)*sqrt(-sqrt(2) + 2))*arctan((2*sqrt(2)*x - 2*sqr
t(2)*sqrt(x^2 - 1/2*sqrt(2)*x*sqrt(sqrt(2) + 2) - 1/2*sqrt(2)*x*sqrt(-sqrt(2) + 2) + 1) - sqrt(sqrt(2) + 2) -
sqrt(-sqrt(2) + 2))/(sqrt(sqrt(2) + 2) - sqrt(-sqrt(2) + 2))) - 1/64*(sqrt(2)*sqrt(sqrt(2) + 2) - sqrt(2)*sqrt
(-sqrt(2) + 2))*log(x^2 + 1/2*sqrt(2)*x*sqrt(sqrt(2) + 2) + 1/2*sqrt(2)*x*sqrt(-sqrt(2) + 2) + 1) + 1/64*(sqrt
(2)*sqrt(sqrt(2) + 2) + sqrt(2)*sqrt(-sqrt(2) + 2))*log(x^2 + 1/2*sqrt(2)*x*sqrt(sqrt(2) + 2) - 1/2*sqrt(2)*x*
sqrt(-sqrt(2) + 2) + 1) - 1/64*(sqrt(2)*sqrt(sqrt(2) + 2) + sqrt(2)*sqrt(-sqrt(2) + 2))*log(x^2 - 1/2*sqrt(2)*
x*sqrt(sqrt(2) + 2) + 1/2*sqrt(2)*x*sqrt(-sqrt(2) + 2) + 1) + 1/64*(sqrt(2)*sqrt(sqrt(2) + 2) - sqrt(2)*sqrt(-
sqrt(2) + 2))*log(x^2 - 1/2*sqrt(2)*x*sqrt(sqrt(2) + 2) - 1/2*sqrt(2)*x*sqrt(-sqrt(2) + 2) + 1) + 1/8*sqrt(-sq
rt(2) + 2)*arctan(-(2*x - 2*sqrt(x^2 + x*sqrt(-sqrt(2) + 2) + 1) + sqrt(-sqrt(2) + 2))/sqrt(sqrt(2) + 2)) + 1/
8*sqrt(-sqrt(2) + 2)*arctan(-(2*x - 2*sqrt(x^2 - x*sqrt(-sqrt(2) + 2) + 1) - sqrt(-sqrt(2) + 2))/sqrt(sqrt(2)
+ 2)) - 1/8*sqrt(sqrt(2) + 2)*arctan(-(2*x - 2*sqrt(x^2 + x*sqrt(sqrt(2) + 2) + 1) + sqrt(sqrt(2) + 2))/sqrt(-
sqrt(2) + 2)) - 1/8*sqrt(sqrt(2) + 2)*arctan(-(2*x - 2*sqrt(x^2 - x*sqrt(sqrt(2) + 2) + 1) - sqrt(sqrt(2) + 2)
)/sqrt(-sqrt(2) + 2)) - 1/32*sqrt(-sqrt(2) + 2)*log(x^2 + x*sqrt(sqrt(2) + 2) + 1) + 1/32*sqrt(-sqrt(2) + 2)*l
og(x^2 - x*sqrt(sqrt(2) + 2) + 1) + 1/32*sqrt(sqrt(2) + 2)*log(x^2 + x*sqrt(-sqrt(2) + 2) + 1) - 1/32*sqrt(sqr
t(2) + 2)*log(x^2 - x*sqrt(-sqrt(2) + 2) + 1)

________________________________________________________________________________________

Sympy [A]  time = 1.09082, size = 15, normalized size = 0.04 \begin{align*} \operatorname{RootSum}{\left (16777216 t^{8} + 1, \left ( t \mapsto t \log{\left (- 32768 t^{5} + x \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4/(x**8+1),x)

[Out]

RootSum(16777216*_t**8 + 1, Lambda(_t, _t*log(-32768*_t**5 + x)))

________________________________________________________________________________________

Giac [A]  time = 1.27347, size = 323, normalized size = 0.93 \begin{align*} -\frac{1}{8} \, \sqrt{-\sqrt{2} + 2} \arctan \left (\frac{2 \, x + \sqrt{-\sqrt{2} + 2}}{\sqrt{\sqrt{2} + 2}}\right ) - \frac{1}{8} \, \sqrt{-\sqrt{2} + 2} \arctan \left (\frac{2 \, x - \sqrt{-\sqrt{2} + 2}}{\sqrt{\sqrt{2} + 2}}\right ) + \frac{1}{8} \, \sqrt{\sqrt{2} + 2} \arctan \left (\frac{2 \, x + \sqrt{\sqrt{2} + 2}}{\sqrt{-\sqrt{2} + 2}}\right ) + \frac{1}{8} \, \sqrt{\sqrt{2} + 2} \arctan \left (\frac{2 \, x - \sqrt{\sqrt{2} + 2}}{\sqrt{-\sqrt{2} + 2}}\right ) - \frac{1}{16} \, \sqrt{-\sqrt{2} + 2} \log \left (x^{2} + x \sqrt{\sqrt{2} + 2} + 1\right ) + \frac{1}{16} \, \sqrt{-\sqrt{2} + 2} \log \left (x^{2} - x \sqrt{\sqrt{2} + 2} + 1\right ) + \frac{1}{16} \, \sqrt{\sqrt{2} + 2} \log \left (x^{2} + x \sqrt{-\sqrt{2} + 2} + 1\right ) - \frac{1}{16} \, \sqrt{\sqrt{2} + 2} \log \left (x^{2} - x \sqrt{-\sqrt{2} + 2} + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(x^8+1),x, algorithm="giac")

[Out]

-1/8*sqrt(-sqrt(2) + 2)*arctan((2*x + sqrt(-sqrt(2) + 2))/sqrt(sqrt(2) + 2)) - 1/8*sqrt(-sqrt(2) + 2)*arctan((
2*x - sqrt(-sqrt(2) + 2))/sqrt(sqrt(2) + 2)) + 1/8*sqrt(sqrt(2) + 2)*arctan((2*x + sqrt(sqrt(2) + 2))/sqrt(-sq
rt(2) + 2)) + 1/8*sqrt(sqrt(2) + 2)*arctan((2*x - sqrt(sqrt(2) + 2))/sqrt(-sqrt(2) + 2)) - 1/16*sqrt(-sqrt(2)
+ 2)*log(x^2 + x*sqrt(sqrt(2) + 2) + 1) + 1/16*sqrt(-sqrt(2) + 2)*log(x^2 - x*sqrt(sqrt(2) + 2) + 1) + 1/16*sq
rt(sqrt(2) + 2)*log(x^2 + x*sqrt(-sqrt(2) + 2) + 1) - 1/16*sqrt(sqrt(2) + 2)*log(x^2 - x*sqrt(-sqrt(2) + 2) +
1)